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Although various types of stable disilenes (silieeilicon doubly
bonded compounds) have been synthesized and their structure and
reactions have been investigated extensiVelry few studies have
been devoted to the synthesis of stable conjugated disilenes, silicon
congeners of polyenes; only two stable tetrasila-1,3-diete3;" ¢
and1b,?9 have been reported to date (Chart 1). Rather unexpectedly,
these tetrasila-1,3-dienes adopt a synclinal conformation around the
central Si-Si single bond in the solid states. During the course of
our recent studies of unsaturated silicon compounds such as trisila-
allene, silanechalcogenones, silaketenimines2ete,have syn-
thesized a novel tetrasila-1,3-dieb@aving an anticlinal conforma-
tion in the solid state by utilizing isolable dialkylsilyler#4 as a
building block. Thermolysis and photolysis 8fshowed highly A
selective cleavage of the=88i double bond giving cyclotrisilene
45 and silylene2, in contrast to the unimolecular reactions of buta-
1,3-dienes.

Figure 1. Molecular structure 08. In an asymmetric unit, two crystallo-
graphically independent molecules were observed. Since they have almost
Chart 1 the same structural characteristics, only the structure of one molecule is
shown. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn

'? '? .. at the 50% probability level. Selected bond lengths (A) and a dihedral angle
R-Si SR Me3Si~__Si_SiMe; (deg): Sit-Si2, 2.1980(16); Si2Si3, 2.3400(15); Si3Si4, 2.2168(16);
',Si-Si\ ' Me3Si><_7<SiMe3 Si1—Si2—Si3—-Si4, —122.56(7).
1a,R=R'= 21‘:’6_(1._”:%'_‘ ) The UV-—vis spectrum of tetrasila-1,3-dieBeshows the longest-
1b, R = t-Bu,MeSi, R' = 2,4,6-MesCgHa wavelength absorption maximum at 510 nelR00) at 77 K in a
R R R R R 3-methylpentar}e gl'ass matrix assignable te & x* transition
R R R / band. The maxima is comparable to thosda{518 nm¥2and1b
si=Si__gf Si/ﬁ' (531 nm¥9 even though there are no aromatic substituents, in
Si— > l\ suggesting significant conjugation between the tw(Si=Si)
R R RrR RR R systemg3
3 (R = SiMe,) 4 (R = SiMey) The?°Si resonances of central and terminal unsaturated Si nuclei

of 3 were observed at 9.3 and 210.2 ppritheH NMR spectrum
showing four singlet signals due to trimethylsilyl groups on one
silacyclopentane ring at room-temperature suggests that the anti-
clinal geometry of S+Si—Si=Si framework in3 is maintained in
solution.

Thermolysis of3 at 80°C in benzene fo3 h afforded4 and
cyclic silene6 in high yields, together with complete consumption
of 3 as determined b{H NMR spectroscopy (Scheme 1). Irradiation
of 3in benzene with a filtered high-pressure mercury arc lainp (

Tetrasila-1,3-dien8 was synthesized as air-sensitive red crystals
in 13% vyield by the reduction of tribromodisilarte which was
prepared by the reaction of silylerzwith MesSiSiBr,1° with
sodium metal in toluene at room temperature (eq 1). Tetrasiladiene
3 was characterized by NMR spectroscopy, MS, elemental analysis,
and X-ray crystallographyf12

Br. SBr,R
R r\s( I ,r-f Na/toluene \ > 390 nm) for 2 h afforded and silepin7 in 51 and 43% vyields,
R><_7<R , 3days ~ 2(1%8%) (1) respectively, after 89% consumption®¢Scheme 1). The structure
5 (R = SiMey) of 4 was identified by NMR spectroscopy, MS, elemental analysis,
- 3.

and X-ray structural analysi€.Compounds and7 are known to
form quantitatively during the thermolystsand photolysi& of

The X-ray analysis 08 has shown that the tetrasiladiene skeleton ' . . . )
silylene2 in benzene, respectively. As shown in eq 2, the formation

is not planar but highly twisted (Figure 1). However, in contrast to o ) ML
1laand1b having a synclinal conformatio adopts an anticlinal of cyclotrisilene4 would be explained by the facile intramolecular

conformation with the Si+Si2—Si3—Si4 dihedral angle of silylene insertion into the SiSi bond of disilenylsilylen® formed

122.56(7). The S+=Si double bond distances 8fare 2.1980(16) via a S=Si double bond dissociation.

and 2.2168(16) A and the central-S8i single bond distance is Because a number of thermal and photochemical dissociation
2 3406(15) A reactions of disilenes giving the corresponding two silylenes have

been reported!8the present reactions 8fgiving 8 and2 are not
* Department of Chemistry. unexpected. However, theoretical calculations of th&8ystems
*Research and Analytical Center for Giant Molecules. (R=H, Me)*® have revealed that the tetrasila-1,3-dienes are much
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Scheme 1
R
A ° A\
(80 °C) 4 (87%) + Si—R
benzene, 3h

R R
3 S 6 (94%)

R = SiMe3 R R

hv(A > 390 nm) ;

L = 4(61%) + Si

benzene, rt, 2h
conversion 89%

R R
7 (43%)

more unstable than the corresponding valence isomers such as

bicyclo[1.1.0]tetrasilanes or cyclotetrasilenes; the calculated activa-
tion energies for the isomerization of tetrasila-1,3-diene to these
valence isomers are known to be less than 10-kwall2.1%2 On

the other hand, the theoretical dissociation energy of tkeS8i
double bond in 1,1,4,4-tetramethyl-2,3-bis(silyl)-tetrasila-1,3-diene
(3) is 48.5 kcaimol! at the B3LYP/6-31%+(d,p) level?® The
isomerization to the valence isomers or dimerization via thHe2}4
cycloaddition would be suppressed by severe steric repulsion
between bulky substituents 8furing the reactiond- The dissocia-

tion energy of the double bonds & may be lowered by the steric
strain than that foB' to make feasible the dissociation in benzene
at reflux2? Preference of the SiSi double bond cleavage to the
central S-Si single bond cleavage is a straightforward indication
of the smaller bond dissociation energy of the double bond than
that of the single bond i8 as predicted by the CGMT mod#&.

R R
R .
Si %
3 -2 si” si - - 4 Q)
R = SiMe, R R
R
8 (R = SiMe,)
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